Y=4/x+^x+.2-5x

Simple and best practice solution for Y=4/x+^x+.2-5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y=4/x+^x+.2-5x equation:



=4/Y+^Y+.2-5Y
We move all terms to the left:
-(4/Y+^Y+.2-5Y)=0
Domain of the equation: Y+^Y+.2-5Y)!=0
We move all terms containing Y to the left, all other terms to the right
Y+^Y-5Y)!=-.2
Y∈R
We get rid of parentheses
-4/Y-^Y+5Y-.2=0
We multiply all the terms by the denominator
-^Y*Y+5Y*Y-(.2)*Y-4=0
We add all the numbers together, and all the variables
-^Y*Y+5Y*Y-(0.2)*Y-4=0
We multiply parentheses
-^Y*Y+5Y*Y-0.2Y-4=0
Wy multiply elements
Y^2+5Y^2-0.2Y-4=0
We add all the numbers together, and all the variables
6Y^2-0.2Y-4=0
a = 6; b = -0.2; c = -4;
Δ = b2-4ac
Δ = -0.22-4·6·(-4)
Δ = 96.04
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-0.2)-\sqrt{96.04}}{2*6}=\frac{0.2-\sqrt{96.04}}{12} $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-0.2)+\sqrt{96.04}}{2*6}=\frac{0.2+\sqrt{96.04}}{12} $

See similar equations:

| 25=5/7w | | 15x-5(2x-1=313x-5) | | 217-w=128 | | 10x^2+320=0 | | 75=-w+208 | | 49-x=168 | | 20(17+5p)=226+20p+p^2 | | (9+2x)(6+2x)=0 | | 20/x+20/2x=10 | | 15x-5(2x-6=313x-5) | | 3.5x10^-4=x^2/0.75-x | | x=30x+60 | | -6x-29=5x-4 | | -7-6x=24-2x | | -16=2(u-7)-4u | | -62=8u-12-18 | | -4=-6.8+v | | 72.8=-5.6n | | -2.8a=36.4 | | 4.2h=-16.8 | | 4x-17=×+10 | | x/100=3/18 | | x²=729 | | 20/10=x/25 | | -1/2x^2=-6+20 | | x/5+12=0 | | f+37/8=8 | | s+26/3=5 | | 33=9s+6 | | 8+4n=-5+9n-7 | | d-85/7=-2 | | b+27/4=6 |

Equations solver categories